

turning mathematical notation into beautiful diagrams

Katherine Ye

Carnegie Mellon University Computer Science Department

turning mathematical notation into beautiful diagrams

Katherine Ye

Carnegie Mellon University Computer Science Department

turning mathematical notation into beautiful diagrams

Katherine Ye

Carnegie Mellon University Computer Science Department

Sneak preview:

Sneak preview:

Who am I?

A believer in the power of language!

Language plays a big role in mathematics.

DIFFERENTIATION 107

MEAN VALUE THEOREMS

5.7 Definition Let f be a real function defined on a metric space X. We say that f has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le f(p)$ for all $q \in X$ with $d(p, q) < \delta$.

Local minima are defined likewise.

Our next theorem is the basis of many applications of differentiation.

5.8 Theorem Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

The analogous statement for local minima is of course also true.

Proof Choose δ in accordance with Definition 5.7, so that

$$a < x - \delta < x < x + \delta < b$$
.

If $x - \delta < t < x$, then

$$\frac{f(t) - f(x)}{t - x} \ge 0.$$

Letting $t \to x$, we see that $f'(x) \ge 0$.

If $x < t < x + \delta$, then

$$\frac{f(t) - f(x)}{t - x} \le 0,$$

which shows that $f'(x) \le 0$. Hence f'(x) = 0.

5.9 **Theorem** If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $x \in (a, b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

Note that differentiability is not required at the endpoints.

Proof Put

$$h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t) \qquad (a \le t \le b).$$

Then h is continuous on [a, b], h is differentiable in (a, b), and

(12)
$$h(a) = f(b)g(a) - f(a)g(b) = h(b).$$

To prove the theorem, we have to show that h'(x) = 0 for some $x \in (a, b)$. If h is constant, this holds for every $x \in (a, b)$. If h(t) > h(a) for some $t \in (a, b)$, let x be a point on [a, b] at which h attains its maximum

108 PRINCIPLES OF MATHEMATICAL ANALYSIS

(Theorem 4.16). By (12), $x \in (a, b)$, and Theorem 5.8 shows that h'(x) = 0. If h(t) < h(a) for some $t \in (a, b)$, the same argument applies if we choose for x a point on [a, b] where h attains its minimum.

This theorem is often called a *generalized mean value theorem*; the following special case is usually referred to as "the" mean value theorem:

5.10 Theorem If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point $x \in (a, b)$ at which

$$f(b) - f(a) = (b - a)f'(x).$$

Proof Take g(x) = x in Theorem 5.9.

- **5.11 Theorem** Suppose f is differentiable in (a, b).
 - (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
 - (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
 - (c) If $f'(x) \le 0$ for all $x \in (a, b)$, then f is monotonically decreasing.

Proof All conclusions can be read off from the equation

$$f(x_2) - f(x_1) = (x_2 - x_1)f'(x),$$

which is valid, for each pair of numbers x_1, x_2 in (a, b), for some x between x_1 and x_2 .

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function f may have a derivative f' which exists at every point, but is discontinuous at some point. However, not every function is a derivative. In particular, derivatives which exist at every point of an interval have one important property in common with functions which are continuous on an interval: Intermediate values are assumed (compare Theorem 4.23). The precise statement follows.

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

A similar result holds of course if f'(a) > f'(b).

Proof Put $g(t) = f(t) - \lambda t$. Then g'(a) < 0, so that $g(t_1) < g(a)$ for some $t_1 \in (a, b)$, and g'(b) > 0, so that $g(t_2) < g(b)$ for some $t_2 \in (a, b)$. Hence g attains its minimum on [a, b] (Theorem 4.16) at some point x such that a < x < b. By Theorem 5.8, g'(x) = 0. Hence $f'(x) = \lambda$.

But it's not the whole story

But it's not the whole story picture.

"People have very powerful facilities for taking in information visually...

On the other hand, they do not have a good built-in facility for turning an internal spatial understanding back into a two-dimensional image.

So mathematicians usually have fewer and poorer figures in their papers and books than in their heads."

William Thurston

(probably trying to make a diagram in Powerpoint)

Question: How can we do a better job of connecting language and visualization?

Idea: design a programming language to reflect the way people already naturally talk about a domain.

Idea: design a programming language to reflect the way people already naturally talk about a domain.

MATLAB

$$\begin{pmatrix} 1 & 0 & & & 0 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 0 & & & -2 & 2 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_{J-1} \\ V_J \end{pmatrix} = \begin{pmatrix} 0 \\ (\Delta x)^2 f_2 \\ \vdots \\ (\Delta x)^2 f_{J-1} \\ (\Delta x)^2 f_J \end{pmatrix}$$

$$\mathbf{b} = 2 * \mathbf{c} + \mathbf{d}$$

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$$

Idea: design a programming language to reflect the way people already naturally talk about a domain.

MATLAB

$$egin{pmatrix} \begin{pmatrix} 1 & 0 & & & 0 \ 1 & -2 & 1 & & \ & \ddots & \ddots & \ddots & \ & & 1 & -2 & 1 \ 0 & & & -2 & 2 \end{pmatrix} \begin{pmatrix} V_1 \ V_2 \ dots \ V_{J-1} \ V_J \end{pmatrix} = \begin{pmatrix} 0 \ (\Delta x)^2 f_2 \ dots \ (\Delta x)^2 f_{J-1} \ (\Delta x)^2 f_J \end{pmatrix} egin{pmatrix} d\omega & = \int_{\mathcal{M}} \omega & = \int_{\partial \mathcal{M}} \omega & = \int_{\partial$$

$$b = 2*c + d$$
$$x = A b$$

TeX

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Idea: design a programming language to reflect the way people already naturally talk about a domain.

MATLAB

$$\begin{pmatrix} 1 & 0 & & & 0 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 0 & & & -2 & 2 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_{J-1} \\ V_J \end{pmatrix} = \begin{pmatrix} 0 \\ (\Delta x)^2 f_2 \\ \vdots \\ (\Delta x)^2 f_{J-1} \\ (\Delta x)^2 f_J \end{pmatrix} \qquad \qquad \int_{\boldsymbol{M}} d\boldsymbol{\omega} = \int_{\boldsymbol{M}} \boldsymbol{\omega}$$

$$b = 2*c + d$$
$$x = A b$$

TeX

$$\int_{M} d\omega = \int_{\partial M} \omega$$

```
\int M d\omega =
\int {\partial M}
     \omega
```

CSS

```
http://penrose.ink
```

```
link {
  font-size: large;
  color: blue;
```

Good news: we already have a nice language for mathematics

DIFFERENTIATION 107

MEAN VALUE THEOREMS

5.7 **Definition** Let f be a real function defined on a metric space X. We say that f has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le f(p)$ for all $q \in X$ with $d(p, q) < \delta$.

Local minima are defined likewise.

Our next theorem is the basis of many applications of differentiation.

5.8 Theorem Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

The analogous statement for local minima is of course also true.

Proof Choose δ in accordance with Definition 5.7, so that

$$a < x - \delta < x < x + \delta < b$$
.

If $x - \delta < t < x$, then

$$\frac{f(t) - f(x)}{t - x} \ge 0.$$

Letting $t \to x$, we see that $f'(x) \ge 0$. If $x < t < x + \delta$, then

$$\frac{f(t) - f(x)}{t - x} \le 0$$

which shows that $f'(x) \le 0$. Hence f'(x) = 0.

5.9 **Theorem** If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $x \in (a, b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

Note that differentiability is not required at the endpoints.

Proof Put

$$h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t) \qquad (a \le t \le b).$$

Then h is continuous on [a, b], h is differentiable in (a, b), and

12) h(a) = f(b)g(a) - f(a)g(b) = h(b).

To prove the theorem, we have to show that h'(x) = 0 for some $x \in (a, b)$. If h is constant, this holds for every $x \in (a, b)$. If h(t) > h(a) for some $t \in (a, b)$, let x be a point on [a, b] at which h attains its maximum

108 PRINCIPLES OF MATHEMATICAL ANALYSIS

(Theorem 4.16). By (12), $x \in (a, b)$, and Theorem 5.8 shows that h'(x) = 0. If h(t) < h(a) for some $t \in (a, b)$, the same argument applies if we choose for x a point on [a, b] where h attains its minimum.

This theorem is often called a *generalized mean value theorem*; the followingspecial case is usually referred to as "the" mean value theorem:

5.10 Theorem If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point $x \in (a, b)$ at which

$$f(b) - f(a) = (b - a)f'(x).$$

Proof Take g(x) = x in Theorem 5.9.

- **5.11 Theorem** Suppose f is differentiable in (a, b).
 - (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
 - (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
 - (c) If $f'(x) \le 0$ for all $x \in (a, b)$, then f is monotonically decreasing.

Proof All conclusions can be read off from the equation

$$f(x_2) - f(x_1) = (x_2 - x_1)f'(x),$$

which is valid, for each pair of numbers x_1 , x_2 in (a, b), for some x between x_1 and x_2 .

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function f may have a derivative f' which exists at every point, but is discontinuous at some point. However, not every function is a derivative. In particular, derivatives which exist at every point of an interval have one important property in common with functions which are continuous on an interval: Intermediate values are assumed (compare Theorem 4.23). The precise statement follows.

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

A similar result holds of course if f'(a) > f'(b).

Proof Put $g(t) = f(t) - \lambda t$. Then g'(a) < 0, so that $g(t_1) < g(a)$ for some $t_1 \in (a, b)$, and g'(b) > 0, so that $g(t_2) < g(b)$ for some $t_2 \in (a, b)$. Hence g attains its minimum on [a, b] (Theorem 4.16) at some point x such that a < x < b. By Theorem 5.8, g'(x) = 0. Hence $f'(x) = \lambda$.

Good news: we already have a nice language for mathematics

DIFFERENTIATION 107 MEAN VALUE THEOREMS 5.7 Definition Let f be a real function defined on a metric space X. We say that f has a local maximum at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le 1$ f(p) for all $q \in X$ with $d(p, q) < \delta$. Mathematical notation is Non Astra already a domainalready a language! specific language! specific language. Local minima are defined likewise. Our next theorem is the basis of many applications of differentiation. 5.8 Theorem Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0. The analogous statement for local minima is of course also true. **Proof** Choose δ in accordance with Definition 5.7, so that $a < x - \delta < x < x + \delta < b$ If $x - \delta < t < x$, then Letting $t \to x$, we see If $x < t < x + \delta$ which shows that $f'(x) \le 0$ 5.9 Theorem If f and g are co differentiable in (a, b), then there is a [f(b) - f(a)]g'(x)Note that differentiability is not Proof Put h(t) = [f(b) - f(a)]g(t) - [gThen h is continuous on [a, b], h is diff To prove the theorem, we have to show that h'(x) = 0 for some $x \in (a, b)$. If h is constant, this holds for every $x \in (a, b)$. If h(t) > h(a) for some $t \in (a, b)$, let x be a point on [a, b] at which h attains its maximum

108 PRINCIPLES OF MATHEMATICAL ANALYSIS

(Theorem 4.16). By (12), $x \in (a, b)$, and Theorem 5.8 shows that h'(x) = 0. If h(t) < h(a) for some $t \in (a, b)$, the same argument applies if we choose for x a point on [a, b] where h attains its minimum.

eralized mean value theorem; the following special case he" mean value theorem:

function on [a, b] which is differentiable

onotonically increasing.

tonically decreasing.

equation

in (a, b), for some x between

ve already seen [Example 5.6(b)] that a function f may have a derivative which exists at every point, but is discontinuous at some point. However, not every function is a derivative. In particular, derivatives which exist at every point of an interval have one important property in common with functions which are continuous on an interval: Intermediate values are assumed (compare

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

A similar result holds of course if f'(a) > f'(b).

Proof Put $g(t) = f(t) - \lambda t$. Then g'(a) < 0, so that $g(t_1) < g(a)$ for some $t_1 \in (a, b)$, and g'(b) > 0, so that $g(t_2) < g(b)$ for some $t_2 \in (a, b)$. Hence a attains its minimum on [a, b] (Theorem 4.16) at some point x such that a < x < b. By Theorem 5.8, g'(x) = 0. Hence $f'(x) = \lambda$.

Still need to connect this language to pictures!

How do we get there?

Outline of this talk:

- I. What do we want from a diagramming tool?
- II. What do tools look like now?
- III. A new language-based tool
- IV. What does a language-based approach enable?

Part I: What makes a good tool?

Picture an ideal tool for making mathematical diagrams...

...what features might it have?

Universality: it should be extensible, i.e., able to generate diagrams from any area of math, using any visual representation

Universality: it should be extensible, i.e., able to generate diagrams from any area of math, using any visual representation

Beauty: it should be possible to make diagrams that *approach* the quality of professional illustrations

Universality: it should be extensible, i.e., able to generate diagrams from any area of math, using any visual representation

Beauty: it should be possible to make diagrams that *approach* the quality of professional illustrations

Productivity: it should be reasonably <u>fast</u> to make or change diagrams

Solve hard problems
 (e.g., prove Fermat's last theorem)

- Solve hard problems
 (e.g., prove Fermat's last theorem)
- Invent novel visualization methods (e.g., sphere eversion)

- Solve hard problems

 (e.g., prove Fermat's last theorem)
- Invent novel visualization methods (e.g., sphere eversion)
- Guarantee that diagrams formally encode mathematics

- Solve hard problems

 (e.g., prove Fermat's last theorem)
- Invent novel visualization methods (e.g., sphere eversion)
- Guarantee that diagrams formally encode mathematics
- Provide unified notation for all of mathematics

In general: shouldn't expect your diagramming tool to do things that even <u>expert</u> mathematicians can't do!

Does such a holy grail exist?

Let's take a look at the state of the art...

Part II: What do tools look like now?

DIAGRAM TOOL OLYMPICS

DIAGRAM TOOL OLYMPICS

DIAGRAM TOOL OLYMPICS

Providence 2019

Providence 2019

Providence 2019

Graphical User Interface (GUI)

Examples: Adobe Illustrator, Inkscape

Lots of clicking and dragging... (sped up 40x)

Very hard to change mathematical content later!

Lots of clicking and dragging... (sped up 40x)

Very hard to change mathematical content later!

Example: Illustrating Steiner's polyhedral formula

Looks easy, right?

Reality: 8 hours of clicking & dragging

Source: Keenan Crane

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Examples: PostScript, TikZ

```
\documentclass{article}
\usepackage{tikz}
\begin{document}
\pagestyle{empty}
\begin{tikzpicture}
    \begin{scope}[shift={(3cm,-5cm)}, fill opacity=0.5]
    \draw[fill=red, draw = black] (0,0) circle (5);
    \draw[fill=green, draw = black] (-1.5,0) circle (3);
    \draw[fill=blue, draw = black] (1.5,0) circle (3);
    \node at (0,4) (A) {\large\textbf{A}};
    \node at (-2,1) (B) {\large\textbf{B}};
    \node at (2,1) (C) {\large\textbf{C}};
    \node at (0,0) (D) {\large\textbf{D}};
    \end{scope}
\end{tikzpicture}
\end{document}
```

```
\documentclass{article}
\usepackage{tikz}
\begin{document}
\pagestyle{empty}
\begin{tikzpicture}
    \begin{scope}[shift={(3cm, -5
    \draw[fill=red, draw = black
    \draw[fill=green, draw = bla
    \draw[fill=blue, draw = black
    \node at (0,4) (A) {\large\t
    \node at (-2,1) (B) {\large\
    \node at (2,1) (C) {\large\t
    \node at (0,0) (D) {\large\textbf{D}};
    \end{scope}
\end{tikzpicture}
\end{document}
```

```
\documentclass{article}
\usepackage{tikz}
\begin{document}
\pagestyle{empty}
\begin{tikzpicture}
    \begin{scope}[shift={(3cm, -5
    \draw[fill=red, draw = black
    \draw[fill=green, draw = bla
    \draw[fill=blue, draw = black
    \node at (0,4) (A) {\large\t
    \node at (-2,1) (B) {\large\
    \node at (2,1) (C) {\large\t
```

Low-level specification of coordinates

Meaning of the diagram is lost

\en

```
\documentclass{article}
\usepackage{tikz}
\begin{document}
\pagestyle{empty}
\begin{tikzpicture}
    \begin{scope}[shift={(3cm, -5
    \draw[fill=red, draw = black
    \draw[fill=green, draw = bla
    \draw[fill=blue, draw = black
    \node at (0,4) (A) {\large\t
    \node at (-2,1) (B) {\large\
    \node at (2,1) (C) {\large\t
       Low-level specification of coordinates
\en
           Meaning of the diagram is lost
```

Also hard to modify mathematical content

Can however handle significant complexity...

Accessibility

Universality

Beauty

Examples: KnotPlot, Group Explorer

More examples

Group Explorer

BayesNet

KnotPlot

GraphViz

strid

JaxoDraw

Example: graph visualization using Graphviz

```
graph G {
  e
  subgraph clusterA {
    a -- b;
    subgraph clusterC {
      C -- D;
  subgraph clusterB {
    d -- f
  e -- clusterB
  clusterC -- clusterB
```


Example: graph visualization using Graphviz

```
graph G {
  e
  subgraph clusterA {
    a -- b;
    subgraph clusterC {
      C -- D;
  subgraph clusterB {
    d -- f
  e -- clusterB
  clusterC -- clusterB
```


High-level & clean—but only works for graphs!

Accessibility

Universality

Beauty

Examples: Matplotlib, MATLAB

Example: Mathematica

Still need to give explicit coordinates

Meaning of expressions easily lost

Example: Wolfram Alpha

Handles more conceptual statements

Cases it can handle are fairly "canned"...

Imagine attempting something like this*...

```
TopologicalSpace X,Y
π1(X) = DirectProduct(Ints,Ints)
π1(Y) = TrivialGroup
I := [0,1] Subset Reals
ContinuousMap f : X -> Y
ContinuousMap gamma : I -> Y
gamma(0) = gamma(1)
eta1 = Image(gamma)
eta2 = PreImage(eta1,f)
p In eta1
```


Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Accessibility

Universality

Beauty

Diagramming is still hard!

Providence 2019

Providence 2019

Part III: A new language-based tool

Work in progress!

Part III: A new language-based tool

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

one style

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

one style

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

one style

another style

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

one style

another style

Also: miss a lot of possibilities if you draw just one diagram...

$$B \subseteq A$$
 and $C \subseteq A$

Also: miss a lot of possibilities if you draw just one diagram...

$$B \subseteq A$$
 and $C \subseteq A$

Let's try this in Penrose (demo)

Question: How can we do a better job of connecting language and visualization?

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

Set

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

logical object

Set

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

It is powerful to formally encode the **mapping** from abstract objects and relationships to their visual representations.

Domain
(Sets)

Domain (Sets) Substance

Domain

(no analogy)

Domain

(no analogy)

Substance

TeX file

Domain

 $\qquad \qquad +$

(no analogy)

Substance

TeX file

Style

TeX style

Domain

 $\quad \qquad \longrightarrow \quad$

(no analogy)

Substance

TeX file

Style

TeX style

solver

TeX layout engine

Web design

Web design

Domain

(no analogy)

Web design

Domain

(no analogy)

Substance

HTML

Web design

Domain

(no analogy)

Substance

HTML

Style

CSS

Web design

Domain

(no analogy)

Substance

HTML

Style

CSS

solver

browser layout engine

A deeper dive with another example

type VectorSpace

type VectorSpace
type Vector

type VectorSpace
type Vector

```
type VectorSpace
type Vector
```

predicate In : Vector v * VectorSpace V

```
type VectorSpace
type Vector
```

```
predicate In : Vector v * VectorSpace V
function addV : Vector * Vector -> Vector
```

```
type VectorSpace
type Vector
```

```
predicate In : Vector v * VectorSpace V
function addV : Vector * Vector -> Vector
```

```
type VectorSpace
type Vector
```

```
predicate In : Vector v * VectorSpace V
function addV : Vector * Vector -> Vector
```

notation "Vector a ∈ U" ~ "Vector a; In(a,U)"

```
type VectorSpace
type Vector
```

```
predicate In : Vector v * VectorSpace V
function addV : Vector * Vector -> Vector
```

```
notation "Vector a \in U" \sim "Vector a; In(a,U)" notation "v1 + v2" \sim "addV(v1,v2)"
```

VectorSpace U

VectorSpace U Vector u1, u2, u3, u4, u5 ∈ U

```
VectorSpace U
Vector u1, u2, u3, u4, u5 \in U
u3 := u1 + u2
```

```
VectorSpace U

Vector u1, u2, u3, u4, u5 ∈ U

u3 := u1 + u2

u5 := u3 + u4
```

```
VectorSpace U

Vector u1, u2, u3, u4, u5 ∈ U

u3 := u1 + u2

u5 := u3 + u4
```

```
VectorSpace U

Vector u1, u2, u3, u4, u5 ∈ U

u3 := u1 + u2

u5 := u3 + u4
```

notation for AddV

VectorSpace U

VectorSpace U Vector u1, u2, u3, u4, u5 ∈ U

```
VectorSpace U
Vector u1, u2, u3, u4, u5 \in U
u3 := u1 + u2
```

```
VectorSpace U

Vector u1, u2, u3, u4, u5 ∈ U

u3 := u1 + u2

u5 := u3 + u4
```

For every vector in a vector space,

For every vector in a vector space,

```
Vector V
with VectorSpace U
where ∨ ∈ U {
```

For every vector in a vector space,

Vector V with VectorSpace U where ∨ ∈ U {

draw it as a little arrow rooted at the origin

For every vector in a vector space,

draw it as a little arrow rooted at the origin

```
Vector V
with VectorSpace U
where v ∈ U {
   v.shape = Arrow {
      start = U.shape.center
}
```

}

For every vector in a vector space,

draw it as a little arrow rooted at the origin

place its label near the arrowhead

```
Vector V
with VectorSpace U
where v ∈ U {
    v.shape = Arrow {
        start = U.shape.center
    }
```

}

For every vector in a vector space,

draw it as a little arrow rooted at the origin

place its label near the arrowhead

```
Vector V
with VectorSpace U
where v ∈ U {
   v.shape = Arrow {
      start = U.shape.center
   }
   encourage nearHead(v.shape,
      v.text)
```

}

For every vector in a vector space,

draw it as a little arrow rooted at the origin

place its label near the arrowhead

make sure the vector's shape is in the vector space's shape

```
Vector V
with VectorSpace U
where v ∈ U {
    v.shape = Arrow {
        start = U.shape.center
    }
    encourage nearHead(v.shape, v.text)
```

For every vector in a vector space,

draw it as a little arrow rooted at the origin

place its label near the arrowhead

make sure the vector's shape is in the vector space's shape

```
Vector V
with VectorSpace U
where v \in U \{
  v.shape = Arrow {
      start = U.shape.center
  }
  encourage nearHead(v.shape,
                      v.text)
  ensure contains(U.shape,
                    v.shape)
```

For every vector that's the sum of vectors,

For every vector that's the sum of vectors,

```
Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {
```

For every vector that's the sum of vectors,

```
Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {
```

draw the end of the arrowhead as the vector sum

For every vector that's the sum of vectors,

```
Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {
```

draw the end of the arrowhead as the vector sum

For every vector that's the sum of vectors,

```
Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {
```

draw the end of the arrowhead as the vector sum

using the "tip-to-tail" mnemonic for the vectors being summed

For every vector that's the sum of vectors,

```
Vector u
with Vector v, w; VectorSpace U
where u := v + w; u, v, w ∈ U {
```

draw the end of the arrowhead as the vector sum

using the "tip-to-tail" mnemonic for the vectors being summed

```
u.v_shadow = Arrow {
    start = w.shape.end
    end = u.shape.end
    style = "dashed"
}

u.w_shadow = Arrow { ... }
```

Domain program

Substance program


```
VectorSpace U
Vector u1, u2, u3, u4, u5 ∈ U
u3 := u1 + u2
u5 := u3 + u4
```

Domain program

Substance program

VectorSpace U
Vector u1, u2, u3, u4, u5 ∈ U
u3 := u1 + u2
u5 := u3 + u4

Domain program

Substance program


```
VectorSpace U
Vector u1, u2, u3, u4, u5 ∈ U
u3 := u1 + u2
u5 := u3 + u4
```

Domain program

Substance program

VectorSpace U Vector u1, u2, u3, u4, u5 \in U

u3 := u1 + u2

u5 := u3 + u4

Key idea:

Every diagram is just one of many solutions to an underlying constrained optimization problem!

Example: Containment

The Style directive

ensure Y.shape contains X.shape

Example: Containment

The Style directive

ensure Y.shape contains X.shape

gets automatically translated into the constraint (for circles)

$$|c_Y - c_X| < r_Y - r_X$$

Example: Containment

The Style directive

ensure Y.shape contains X.shape

gets automatically translated into the constraint (for circles)

$$|c_Y - c_X| < r_Y - r_X$$

Key idea: programmer does not ever have to think this way.

Automatically laying out a diagram

the actual energy landscape is much more complicated!

Automatically laying out a diagram

the actual energy landscape is much more complicated!

Automatically laying out a diagram

the actual energy landscape is much more complicated!

Opening up the "magical box"

Some implementation details:

Backend written in Haskell Frontend written in Typescript + React Outputs diagrams in SVG

Ask me later if you're really interested!

Part IV: What does language enable?

My goal: lower the floor and raise the ceiling for making diagrams!

My goal: lower the floor and raise the ceiling for making diagrams!

reduce the amount of work and expertise needed to make a diagram

My goal: lower the floor and raise the ceiling for making diagrams!

empower people to create new kinds of diagrams

reduce the amount of work and expertise needed to make a diagram

Some live examples

Sets
Functions
Vectors

use.penrose.ink
(ALPHA)

responsive diagrams

intelligently exploring the diagram space by finding different cases in the notation

$$B, C \subset A$$

intelligently exploring the diagram space by finding different cases in the visualization

Key idea

Sets A, B, C such that $B \subseteq A$ and $C \subseteq A$.

It is powerful to formally encode the **mapping** from abstract objects and relationships to their visual representations.

Thanks to my collaborators!

Wode Ni, Max Krieger, Rain Du, Dor Ma'ayan, Lily Shellhammer, Jenna Wise

advised by Keenan Crane, Jonathan Aldrich, and Joshua Sunshine

We want to make diagrams like these the norm—not the exception!

We want your input!

Come talk to Katherine (kqy@cs.cmu.edu)

turning mathematical notation into beautiful diagrams

http://penrose.ink
http://use.penrose.ink